Deployed Multi-Disease Prediction
WebApp using

[Azure Web App Service, Virtual Machine, and github Actions]

Problem statement -

Despite the availability of advanced medical technology and resources, the lack of an efficient and organized
healthcare system in many parts of the world poses significant challenges for individuals seeking accurate
and timely diagnosis of diseases. This is particularly true in rural areas where farmers and other individuals
face limited access to specialized healthcare services.

In India, for example, where agriculture is a major occupation, farmers and rural communities often struggle
with inadequate healthcare infrastructure and the absence of organized diagnostic facilities. This results in
delayed detection and diagnosis of critical diseases such as pneumonia, malaria, diabetes, heart disease, and
breast cancer, leading to increased morbidity rates and limited treatment options.

Solution :

o0 o0
()] ()]
Developers End Users
Develop .
application HTTP(s) Endpoint

P Push to Repo

lask g

Trigger Workflow

GitHub

Build and Deploy

>
>

GitHub Actions Azure App Service

To address these challenges, I have developed a WebApp using Azure services,
GitHub Actions, Azure Web App service, and Virtual Machine service. This
multidisease detection WebApp aims to provide accessible and reliable disease
prediction for farmers and individuals in rural areas. By leveraging machine
learning algorithms and medical data analysis, the WebApp can assist in the early
detection and diagnosis of diseases, empowering individuals to seek appropriate
medical care and improve their overall well-being.

Project Link : https://multidisease.azurewebsites.net/

https://multidisease.azurewebsites.net/

Pre-Requisites:
¢ You will need an Azure subscription. If you do not have one, you
e can get one for free. Click here to create a free Azure account.
e Azure Web App services and VM credits .
e Make sure you have Python installed and the VS Code Python

Steps 1:

Create webapp service:

Sign in to the Azure portal, navigate to the App Services section, and click on "Create a resource.”
Select "Web App” and provide the required details such as the subscription, resource group, and
unique app name.

Configure the web app settings, including the runtime stack (Python,), operating system, and
deployment options (such as Docker or GitHub integration). Finally, click on "Create" to provision
the Azure Web App.

m multidisease
< W

Steps to configure Deployment Center for GitHub Actions in Azure:

1. Navigate to the Azure portal, open your Azure Web App, and go to the "Deployment
Center" section. Select "GitHub Actions" as the source control option.

2. Follow the prompts to connect your GitHub account, select the repository containing your
web app code, and configure the deployment settings. Specify the branch to deploy from,
choose the build workflow file (usually located in the .github/workflows directory), and
customize any additional deployment options as needed.

Settings Logs FTPS credentials

Deploy and build code from your preferred source and build provider. Learn more

Source GitHub

s Disconnect

GitHub

Signed in as danishpatel23
Organization danishpatel23
Repository multidisease
Branch master (3
Build

Build provider GitHub Actions
Runtime stack Python
Version Python 3.9

After saving you will see the workflow file trigger in github actions
4 Build and deploy Python app to Azure Web App - multidisease
Build and deploy Python app to Azure Web App - multidisease #1

I (M Summary
Manually triggered 2 minutes ago Status Total duration Artifacts
Jobs & danishpatel23 -o- 828708c In progress - -
@ build
deploy master_multidisease.yml
on: workflow_dispatch
Run details
@ Usage
&3 Workflow file @ build 1m 405 deploy 195

Deploying to Production

STEP 2 : windows VM creating

Sign in to the Azure portal, click on "Create a resource,"” and search for "Windows Server’
in the marketplace. Select the desired Windows Server version and click on "Create.”

Provide the necessary details for the VM, such as the subscription, resource group, VM
name, region, and availability options. Choose the appropriate VM size, specify the
username and password for authentication, and configure additional settings like
networking, storage, and monitoring. Finally, review and validate the configuration, then
click on "Create" to provision the Windows VM in Azure.

. Under Instance details, enter myVM for the Virtual machine name and choose Windows Server

2022 Datacenter - Gen 2 for the Image. Leave the other defaults.

Instance details

Virtual machine name * (@)

Region* ©
Availability options ©

Security type

Image * @

VM architecture (@

| myVM

/]

[(Us) West Us]

| Mo infrastructure redundancy required ~ |

Trusted launch virtual machines v |
Configure security features

] windows Server 2022 Datacenter - x64 Gen2 g |

See all images | Configure VM gene

® x64

o Arm64 is not supported with the selected image

tol

1. Under Administrator account, provide a username, such as azureuser and

a password. The password must be at least 12 characters long and meet

the defined complexity requirements.

Administrator account

l azureuser

Username * (@O
Password * (O l sossssrenees
Confirm password * © l cssesssinans

2. Under Inbound port rules, choose Allow selected ports and then
select RDP (3389) and HTTP (80) from the drop-down.

Inbound port rules

Select which virtual machine network ports are accessible from the public internet. You can specify more limited or granular

network access on the Networking tab.

Public inbound ports * @ O None

@ Allow selected ports

Select inbound ports * ‘ RDP (3389)

A\ This will allow all IP addresses to access your virtual machine. This is only
recommended for testing. Use the Advanced controls in the Networking tab to
create rules to limit inbound traffic to known IP addresses.

https://learn.microsoft.com/en-us/azure/virtual-machines/windows/faq#what-are-the-password-requirements-when-creating-a-vm-

docs (G+/) E @ @ @ ré?

_‘

B ' Remote Deskton

& Remote Desktop Connection X
~ Connecting to . .
<) 2022811245 L] Openinmobile [ZE CLI/PS R’ Feed

— Cancel

Instiating remote connection

|Systen
(Windows Server 2019 Datacenter
w

Standard 4 GiB memory
Copied

novej

Public IP acan

Connecting user RDP

Code snippet of python:

from flask import Flask, render_template, request, flash, redirect
import pickle

import numpy as np

from PIL import Image

from tensorflow.keras.models import load_model

app = Flask(_name_)

def predict(values, dic):
iflen(values) == 8:
model = pickle.load(open('models/diabetes.pkl’,'rb"))
values = np.asarray(values)
return model.predict(values.reshape(1, -1))[0]

elif len(values) == 26:
model = pickle.load(open(‘'models/breast_cancer.pkl','rb"))
values = np.asarray(values)
return model.predict(values.reshape(1, -1))[0]

elif len(values) == 13:
model = pickle.load(open('models/heart.pkl’,'rb"))
values = np.asarray(values)

return model.predict(values.reshape(1, -1))[0]

@app.route("/")
def home():
return render_template("home.html")

@app.route("/diabetes", methods=['GET', 'POST'])
def diabetesPage():
return render_template('diabetes.html")

@app.route("/cancer”, methods=['GET', 'POST'])
def cancerPage():
return render_template('breast_cancer.html')

@app.route("/heart", methods=['GET"', 'POST"])
def heartPage():
return render_template('heart.html")

@app.route("”/malaria”, methods=['GET', 'POST'])
def malariaPage():
return render_template('malaria.html’)

@app.route("/pneumonia”, methods=['GET', 'POST'])

def pneumoniaPage():

return render_template('pneumonia.html')

@app.route("/predict”, methods = ['POST', 'GET'])
def predictPage():
try:
if request. method == "POST":
to_predict_dict = request.form.to_dict()
to_predict_list = list(map(float, list(to_predict_dict.values())))
pred = predict(to_predict_list, to_predict_dict)
except:
message = "Please enter valid Data"
return render_template("home.html", message = message)

return render_template('predict.html’, pred = pred)

@app.route("/malariapredict”, methods = ['POST', 'GET'])
def malariapredictPage():
if request.method == "POST":
try:
if 'image’ in request.files:
img = Image.open(request.files['image'])
img = img.resize((36,36))

img = np.asarray(img)
img = img.reshape((1,36,36,3))
img = img.astype(np.float64)
model = load_model("models/malaria.h5")
pred = np.argmax(model.predict(img)[0])
except:
message = "Please upload an Image"

return render_template('malaria.html’, message = message)

return render_template('malaria_predict.html’, pred = pred)

@app.route("/pneumoniapredict”, methods = ['POST', 'GET'])
pneumoniapredictPage():
if request.method == 'POST":
try:
if 'image’ in request.files:
img = Image.open(request.files['image']).convert('L")
img = img.resize((36,36))
img = np.asarray(img)
img = img.reshape((1,36,36,1))
img = img / 255.0
model = load_model("models/pneumonia.h5")
pred = np.argmax(model.predict(img)[0])
except:
message = "Please upload an Image"
return render_template('pneumonia.html’, message = message)
return render_template('pneumonia_predict.html’, pred = pred)

_=='_main_":

SCREENSHOTS :

Home Diabetes Heart Breast Cancer Malaria Pneumonia

This is basic Machine Learning and Deep Learning based WebApp.

These Machine Learning models and Deep Leaning models are trained on large datasets and thousands of images.

Model Accuracies:

« Diabetes Model. 98.25%

® Heart Disease Model: 85.25%
* Breast Cancer Model: 98.25%
* Malaria Model: 96%

* Pneumonia Model: 95%

Information about the Diseases which this webApp can predict.

Diabetes

Diabetes is a disease that occurs when your blood glucose, also called blood sugar, is too high. Blood glucose is your main source of energy and
comes from the food you eat. Insulin, a hormone made by the pancreas, helps glucose from food get into your cells to be used for energy.
Sometimes your body doesn't make enough—or any—insulin or doesn't use insulin well. Glucose then stays in your blood and doesn't reach your

cells.

Symptoms
« Urinating often

S S

Malaria Predictor

Please upload the image of the cell

[Ehosss Fiie | ©100P61ThI...4_cell_21.png

After submit

Home Diabetes

This cell is an Infected Malerial Cell.

multidisease.azurewebsites.net,

Home Diabetes Heart Breast Cancer Malaria Pneum

Heart Disease Predictor

\ | J |
{ | [| [
[' J | (e
\' | - J
[\

inLinkedln O GitHub
Made with @ by danishpate23

Challenges faced in GitHub Actions ZIP deployment and Python
packages:

1. Deployment Failure: ZIP deployment in GitHub Actions may fail due to package structure,
dependency conflicts, or version mismatches, requiring thorough troubleshooting to identify and
resolve the issue.

2. Package Compatibility: Ensuring compatibility between Python packages can be challenging,
with potential conflicts or dependencies on specific versions, requiring careful management and
version control to avoid deployment errors.

3. Package Size Limitations: GitHub Actions has size limitations for deployment packages. Large
package sizes can exceed these limits, leading to deployment failures. Managing package sizes,
especially with large datasets or multiple libraries, becomes crucial.

4. Dependency Management: Managing dependencies and ensuring their availability during
deployment can be challenging. Some packages may have additional dependencies or require
specific system configurations, necessitating proper handling and provisioning in the deployment
environment.

Set up job
Download artifact from build job

Deploy to Azure Web App

» Run azure/webapps-deploy@v2

Package deployment using ZIP Deploy initiated.

Error: Failed to deploy web package to App Service.

Error: Deployment Failed, Error: Failed to deploy web package to App Service.
Conflict (CODE: 489)

App Service Application URL: https://multidisease.azurewebsites.net

Complete job

Business Benefits :

Improved Healthcare Access: The WebApp bridges the gap in healthcare access by providing
individuals in rural areas with an accessible platform for disease detection and diagnosis,
empowering them to take proactive measures for their health.

Early Disease Detection: By leveraging machine learning algorithms, the WebApp enables early
detection of diseases such as pneumonia, malaria, diabetes, heart disease, and breast cancer,
leading to timely medical intervention and potentially improved treatment outcomes.

Cost Savings: Timely disease detection and early intervention can potentially reduce long-term
healthcare costs by preventing complications and minimizing the need for extensive and
expensive treatments.

Increased Awareness and Education: The WebApp promotes health awareness and education by
providing users with information about various diseases, risk factors, and preventive measures,
empowering them to make informed decisions about their health.

Enhanced Agricultural Productivity: By addressing the healthcare needs of farmers, the WebApp
contributes to improving agricultural productivity by ensuring that farmers are in good health,
thereby reducing productivity losses due to illness.

References to Microsoft Documentation:

Azure App Service Documentation: https://docs.microsoft.com/azure/app-service/

Quickstart: Create a web app in Azure App Service: https://docs.microsoft.com/azure/app-
service/quickstart-create-web-app

Azure App Service Deployment Center: https://docs.microsoft.com/azure/app-service/deploy/
Azure Virtual Machines (VM):

Azure Virtual Machines Documentation: https://docs.microsoft.com/azure/virtual-machines/
Quickstart: Create a Windows virtual machine in the Azure portal:
https://docs.microsoft.com/azure/virtual-machines/windows/quick-create-portal

Azure Virtual Machines pricing: https://docs.microsoft.com/azure/virtual-machines/pricing
GitHub Actions:

GitHub Actions Documentation: https://docs.github.com/en/actions
Getting started with GitHub Actions: https://docs.github.com/en/actions/getting-started-with-
github-actions

