
Deployed Multi-Disease Prediction

WebApp using
[Azure Web App Service, Virtual Machine, and github Actions]

Problem statement –

Despite the availability of advanced medical technology and resources, the lack of an efficient and organized

healthcare system in many parts of the world poses significant challenges for individuals seeking accurate

and timely diagnosis of diseases. This is particularly true in rural areas where farmers and other individuals

face limited access to specialized healthcare services.

In India, for example, where agriculture is a major occupation, farmers and rural communities often struggle

with inadequate healthcare infrastructure and the absence of organized diagnostic facilities. This results in

delayed detection and diagnosis of critical diseases such as pneumonia, malaria, diabetes, heart disease, and

breast cancer, leading to increased morbidity rates and limited treatment options.

Solution :

To address these challenges, I have developed a WebApp using Azure services,

GitHub Actions, Azure Web App service, and Virtual Machine service. This

multidisease detection WebApp aims to provide accessible and reliable disease

prediction for farmers and individuals in rural areas. By leveraging machine

learning algorithms and medical data analysis, the WebApp can assist in the early

detection and diagnosis of diseases, empowering individuals to seek appropriate

medical care and improve their overall well-being.

Project Link : https://multidisease.azurewebsites.net/

https://multidisease.azurewebsites.net/

Pre-Requisites:
 You will need an Azure subscription. If you do not have one, you

 can get one for free. Click here to create a free Azure account.

 Azure Web App services and VM credits .

 Make sure you have Python installed and the VS Code Python

Steps 1:

Create webapp service:
Sign in to the Azure portal, navigate to the App Services section, and click on "Create a resource."

Select "Web App" and provide the required details such as the subscription, resource group, and

unique app name.

Configure the web app settings, including the runtime stack (Python,), operating system, and

deployment options (such as Docker or GitHub integration). Finally, click on "Create" to provision

the Azure Web App.

Steps to configure Deployment Center for GitHub Actions in Azure:

1. Navigate to the Azure portal, open your Azure Web App, and go to the "Deployment

Center" section. Select "GitHub Actions" as the source control option.

2. Follow the prompts to connect your GitHub account, select the repository containing your

web app code, and configure the deployment settings. Specify the branch to deploy from,

choose the build workflow file (usually located in the .github/workflows directory), and

customize any additional deployment options as needed.

After saving you will see the workflow file trigger in github actions

STEP 2 : windows VM creating
Sign in to the Azure portal, click on "Create a resource," and search for "Windows Server"

in the marketplace. Select the desired Windows Server version and click on "Create."

Provide the necessary details for the VM, such as the subscription, resource group, VM

name, region, and availability options. Choose the appropriate VM size, specify the

username and password for authentication, and configure additional settings like

networking, storage, and monitoring. Finally, review and validate the configuration, then

click on "Create" to provision the Windows VM in Azure.

1. Under Administrator account, provide a username, such as azureuser and
a password. The password must be at least 12 characters long and meet
the defined complexity requirements.

2. Under Inbound port rules, choose Allow selected ports and then
select RDP (3389) and HTTP (80) from the drop-down.

https://learn.microsoft.com/en-us/azure/virtual-machines/windows/faq#what-are-the-password-requirements-when-creating-a-vm-

Connecting user RDP

Code snippet of python :
from flask import Flask, render_template, request, flash, redirect

import pickle

import numpy as np

from PIL import Image

from tensorflow.keras.models import load_model

app = Flask(__name__)

def predict(values, dic):

 if len(values) == 8:

 model = pickle.load(open('models/diabetes.pkl','rb'))

 values = np.asarray(values)

 return model.predict(values.reshape(1, -1))[0]

 elif len(values) == 26:

 model = pickle.load(open('models/breast_cancer.pkl','rb'))

 values = np.asarray(values)

 return model.predict(values.reshape(1, -1))[0]

 elif len(values) == 13:

 model = pickle.load(open('models/heart.pkl','rb'))

 values = np.asarray(values)

 return model.predict(values.reshape(1, -1))[0]

@app.route("/")

def home():

 return render_template('home.html')

@app.route("/diabetes", methods=['GET', 'POST'])

def diabetesPage():

 return render_template('diabetes.html')

@app.route("/cancer", methods=['GET', 'POST'])

def cancerPage():

 return render_template('breast_cancer.html')

@app.route("/heart", methods=['GET', 'POST'])

def heartPage():

 return render_template('heart.html')

@app.route("/malaria", methods=['GET', 'POST'])

def malariaPage():

 return render_template('malaria.html')

@app.route("/pneumonia", methods=['GET', 'POST'])

def pneumoniaPage():

 return render_template('pneumonia.html')

@app.route("/predict", methods = ['POST', 'GET'])

def predictPage():

 try:

 if request.method == 'POST':

 to_predict_dict = request.form.to_dict()

 to_predict_list = list(map(float, list(to_predict_dict.values())))

 pred = predict(to_predict_list, to_predict_dict)

 except:

 message = "Please enter valid Data"

 return render_template("home.html", message = message)

 return render_template('predict.html', pred = pred)

@app.route("/malariapredict", methods = ['POST', 'GET'])

def malariapredictPage():

 if request.method == 'POST':

 try:

 if 'image' in request.files:

 img = Image.open(request.files['image'])

 img = img.resize((36,36))

 img = np.asarray(img)

 img = img.reshape((1,36,36,3))

 img = img.astype(np.float64)

 model = load_model("models/malaria.h5")

 pred = np.argmax(model.predict(img)[0])

 except:

 message = "Please upload an Image"

 return render_template('malaria.html', message = message)

 return render_template('malaria_predict.html', pred = pred)

@app.route("/pneumoniapredict", methods = ['POST', 'GET'])

def pneumoniapredictPage():

 if request.method == 'POST':

 try:

 if 'image' in request.files:

 img = Image.open(request.files['image']).convert('L')

 img = img.resize((36,36))

 img = np.asarray(img)

 img = img.reshape((1,36,36,1))

 img = img / 255.0

 model = load_model("models/pneumonia.h5")

 pred = np.argmax(model.predict(img)[0])

 except:

 message = "Please upload an Image"

 return render_template('pneumonia.html', message = message)

 return render_template('pneumonia_predict.html', pred = pred)

if __name__ == '__main__':

 app.run(debug = True)

SCREENSHOTS :

After submit

Challenges faced in GitHub Actions ZIP deployment and Python

packages:

1. Deployment Failure: ZIP deployment in GitHub Actions may fail due to package structure,

dependency conflicts, or version mismatches, requiring thorough troubleshooting to identify and

resolve the issue.

2. Package Compatibility: Ensuring compatibility between Python packages can be challenging,

with potential conflicts or dependencies on specific versions, requiring careful management and

version control to avoid deployment errors.

3. Package Size Limitations: GitHub Actions has size limitations for deployment packages. Large

package sizes can exceed these limits, leading to deployment failures. Managing package sizes,

especially with large datasets or multiple libraries, becomes crucial.

4. Dependency Management: Managing dependencies and ensuring their availability during

deployment can be challenging. Some packages may have additional dependencies or require

specific system configurations, necessitating proper handling and provisioning in the deployment

environment.

Business Benefits :
Improved Healthcare Access: The WebApp bridges the gap in healthcare access by providing

individuals in rural areas with an accessible platform for disease detection and diagnosis,

empowering them to take proactive measures for their health.

Early Disease Detection: By leveraging machine learning algorithms, the WebApp enables early

detection of diseases such as pneumonia, malaria, diabetes, heart disease, and breast cancer,

leading to timely medical intervention and potentially improved treatment outcomes.

Cost Savings: Timely disease detection and early intervention can potentially reduce long-term

healthcare costs by preventing complications and minimizing the need for extensive and

expensive treatments.

Increased Awareness and Education: The WebApp promotes health awareness and education by

providing users with information about various diseases, risk factors, and preventive measures,

empowering them to make informed decisions about their health.

Enhanced Agricultural Productivity: By addressing the healthcare needs of farmers, the WebApp

contributes to improving agricultural productivity by ensuring that farmers are in good health,

thereby reducing productivity losses due to illness.

References to Microsoft Documentation:
Azure App Service Documentation: https://docs.microsoft.com/azure/app-service/

Quickstart: Create a web app in Azure App Service: https://docs.microsoft.com/azure/app-

service/quickstart-create-web-app

Azure App Service Deployment Center: https://docs.microsoft.com/azure/app-service/deploy/

Azure Virtual Machines (VM):

Azure Virtual Machines Documentation: https://docs.microsoft.com/azure/virtual-machines/

Quickstart: Create a Windows virtual machine in the Azure portal:

https://docs.microsoft.com/azure/virtual-machines/windows/quick-create-portal

Azure Virtual Machines pricing: https://docs.microsoft.com/azure/virtual-machines/pricing

GitHub Actions:

GitHub Actions Documentation: https://docs.github.com/en/actions

Getting started with GitHub Actions: https://docs.github.com/en/actions/getting-started-with-

github-actions

